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Abstract

We show that there is a one-to-one correspondence betwegrtdlnfunctions of aj-deforma-
tion of the KP hierarchy and the planes in Sato Grassmar®iaklsing this correspondence, we
define a subspao@rj}1d of Gr, which is ag-deformation of Wilson’s adelic Grassmanniam?2?.
From each plandV e Grg‘d we construct a bispectral commutative algel#@ of ¢-difference
operators, which extends to the cases 1 all rank one solutions to the bispectral problem. The
common eigenfunctiol (x, z) for the operators fromt?, is ag-wave (Baker—Akhiezer) function
for a rational (inx) solution to they-KP hierarchy. The poles of these solutions are governed by a
certaing-deformation of the Calogero—Moser hierarchy. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In [16], Frenkel proposed @-deformation of thevth KdV hierarchy which is Hamil-
tonian with respect to the quantum Poisson algetas(y) defined in [17]. A similar
deformation of the KP hierarchy was obtained by Khesin et al. [30], who considered a
certaing-deformation of the Lie algebra of pseudo-differential operators on the circle, see
also [35].

In [24], a slightly different deformation of the KP hierarchy was proposed. It was shown
that by making an appropriate shift in the arguments of the classical Schur polynomials,
one obtains rational solutions of the deformed hierarchy. This result was extended in [1,25],
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where it was proved that the same shift in any classical tau function leads to a solution of
the deformed hierarchy.

Inthe present paper we complete the study ofjttt@u functions, by showing in Theorem
2.1 that the shift mentioned above characterizes;tte@u functions in the ring of formal
power series. Thus, we establish, in fact, a one-to-one correspondence betwgdatthe
functions and the planes in Sato Grassmannian.

As a first application of this result we construciyadeformation of Wilson’s adelic
GrassmanniarGrjd, which parametrizes rank one commutative bispectral algebras of
g-difference operators. &-difference operatof (x, D, .) is calledbispectralif it has a
family of eigenfunctionsl (x, z) thatis also a family of eigenfunctions of soglifference
operatorB(z, Dy ;) in the spectral parameteri.e.

L(x, Dy x)¥(x,2) = f(2)¥(x,2), (1.1)
B(z, Dg )V (x,z) =0(x)¥(x, 2). (1.2)
HereD, , denotes the usugtderivative operator acting on functionsof

f@ - f

Dq,xf(x) = (q _ 1)x

In the limitg — 1, L and B become ordinary differential operators. In this context the
problem was posed and completely solved foof order 2, in the pioneering work of
Duistermaat and Grinbaum [15]. It turns out that this problem is intimately related with
several actively developing areas of mathematics: integrable systems [15,41,42] and their
master symmetries [44], the representation theory of VirasoroVénd,, algebras [8],
Huygens principle [9], to mention only a few.

Our construction oGr';]"d is inspired by Wilson’s approach [41] to the bispectral problem.

In view of the works of Burchnall and Chaundy [11-13] and Krichever [31], one may
consider any operatak (x, 3,) as an element of a maximal commutative algeldraf
differential operators. An important invariant of such an algebra iaitk i.e., the greatest
common divisor of the orders of the operators in the algebra. In[41] Wilson found a beautiful
characterization of all rank one solutions to the bispectral problem. He proved that a maximal
rank one commutative algehrbof ordinary differential operators is bispectral if and only if

the curve Spegl is rational and unicursal (i.e. all singularities are cusps). The bispectrality
is a consequence of an extra symmetrgirid called thebispectral involutionRoughly, this

is the map which exchanges the role of the arguments in the Baker—Akhiezer function. In
the framework of Sato Grassmannian, the rank one bispectral algebras are parametrized by
an adelic Grassmannia®-24, whose points correspond to solutions of the KP hierarchy,
arising from unicursal rational curves by Krichever's construction. These solutions are
nothing but the rational solutions of the KP hierarchy [32,40,42].

In the last few years, the original results of Duistermaat—Grinbaum and Wilson have been
extended in several directions. Bakalov et al. [7] and Kasman and Rothstein [28] constructed
bispectral algebras of ordinary differential operators of any rank (see also [6] for an abstract
version of the bispectral problem and further examples). In a different vein, Griinbaum and
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Haine [18,19,21] started a study of a discrete version of the original problem, by replacing
L by a doubly infinite tridiagonal matrix. If one imposes special boundary conditions on the
joint eigenfunctions, this problem contains the classical problem of classifying orthogonal
polynomials which are eigenfunctions of a differential operator, and leads to extensions
of the Askey—Wilson polynomials wheB is a g-difference operator [4,10,20,22]. For a
comprehensive review of the ‘difference, differentigldifference)’ bispectral problem we
refer the reader to the recent survey paper [23].

The ‘q-difference g-difference’ version of the bispectral problem, that we study in this
paper, can be looked up as a natural connection between the different bispectral situa-
tions. Indeed, anyq-difference’ operatol. (x, D, ) can be considered as a difference
operator if we pose = ¢", with n € Z and becomes a differential operator in the limit
g — 1 (if it exists). At present, it seems to offer the simplest instance among the various
discrete versions of the bispectral problem, which can be solved for arbitrary order op-
erators (at least in rank one). Thedeformed Grassmanniamr;‘d, that we construct, is
still contained in the sub-Grassmanni@n" which parametrizes the solutions of the KP
hierarchy arising from rational algebraic curves. The interse(ﬂ;ioﬁj N Grad coincides
with the sub-Grassmannia¥ro whose tau functions are polynomials in only finitely many
time variabless, t2, . ... As a consequence, the rational curves corresponding to planes
W e Gr?d\Gro must haveat least one node as a singular paint

Using the correspondence betweenghau functions and the planes in Sato Grassman-
nian, we construct a commutative algebct%, of g-difference operators from any plane
W e Gr.ForWw e Gr;‘d, the corresponding-tau functionrgv(x, t) is a polynomial inx,
which allows us to show in Section 3 the existence of a bispectral opedatoD, .) for
any polynomiab (x), such thaD, ,6(x) is divisible byr;{, (xg). However, in contrast to the
q = 1case, forageneric plang € Gr;’;‘d, the tau function{fv(x, t) is no longer polynomial
inthe time variablesg, 15, . . . . In Section 5 we consider such a situation, which corresponds
to a specificV-soliton solution. Formula (5.11) represents an extension of Shiota—Wilson
formula for the rational KP solutions [40,42]. As an immediate consequence, we show that
in this case the symmetyy in Gr2d can be extended tGrZ‘d. Moreover, as inthg = 1
case [42],8 corresponds to a very simple involution at the level of Calogero—Moser pairs
of matrices, see Theorem 5.3.

Finally, in Section 6, we examine the dynamics of the poles of the rational solutiot)s (in
to theg-KP hierarchy and show that the motion is governed by a hierarchy of Hamiltonian
systems. Thath Hamiltonian, corresponding to thg¢h KP flow, is of the form

Hy, = (-D" %TF(Y"),

whereY is a deformation of the Calogero—Moser matrix, see Theorem 6.1. This result can
be looked up as a-analogue of the mysterious connection between the KP hierarchy and
the Calogero—Moser hierarchy [3,32,40]. The derivation of the system (6.6) is obtained by
a suitable adaptation of the approach of Shiota [40] for the classical case, within the context
of theg-KP hierarchy. The main difficulty here, compared to ¢he- 1 case, comes from

the non-triviality of the first;-KP flow. The key new ingredient is thétdr; can be rewritten
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in a Lax form (see Lemma 6.2), which allows us to write the system in the Hamiltonian
form above.
Some of the results in the present paper were announced in a brief note [26].

2. Theg-KP hierarchy and algebras ofg-difference operators

In this section we review briefly a-analogue of the KP hierarchy, introduced in [24].
The exposition is based orjadeformation of Sato theory [14,37] and follows closely [25].
For an alternative approach, using a correspondence with the Toda lattice hierarchy, we
refer the reader to [1].

Theg-derivativeD,, , f of a function f (x) is given by

fXxg — f(x)
x(g—-1

and(Dy . )(0) = f’(0), by continuity, providedf’(0) exists. We definedy , - f(x) for
anyn € Z, as the formal-pseudo-difference operator

(Dg.x f)(x) = x #0,

Dl - f=Y_ (’,Z) (D} Hxq ) Di kK,
k=0 q

where

(”) (n) AL—g"HA—g" Y. (1 —g"
= 1’ — )
g kJ/, L-—9)1—gd)---1—qhH

Consider the formaj-pseudo-difference operator

o
L=Dy,+ao+ Y aD,".
i=1
The g-deformed Kadomtsev—Petviashvili (in shgrKP) hierarchy is defined by the Lax
equations

oL .
;ﬂﬂ@U%u, (2.1)
tj
where(L/) ;. denotes the positive part of the pseudo-difference opetdtddne can define
analogues of the wave functigf! (x, t1, o, . . ., z) and the tau functiom? (x, 11, 12, . .. ), 2

which are connected by Sato formula

U(x, 10— 1)z, 10 — 1/272, ... > .
WI(x, 11,10, ..., 2) = < (= /212 = 122 )e;‘Zexp<Zt,~zl)
i=1

Tq(x7tl7 t27 )

oo
=yi(x,11,12,..., 7)€, €Xp (an’) , (2.2)

i=1

2|t is a tau function irr in the sense of Sato theory for anyixed.
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where
P 1-gt §
b ‘%(l—qxl—q%---(l—qk)x

denotes thej-exponential. The operatdr is conjugated taD, , by the wave operator
S = wq()@ tl’ t2’ LR Dq,x) :3

L=SD,,5t

This formula allows us to express all functidas(x, ¢)} interms of the tau function? (x, t),
where we have put= (11, r2, . . . ). In particular, we have

0 t9(xq, 1)
,1) = —log—————. 2.3
ao(x, 1) %9700 (2.3)
The KP flows are represented on the wave function by the formulae
y4q
0T (k) w (2.4)
daty
fork = 1,2, ... and the operatak acts as a multiplication by
LV = zwe, (2.5)
From (2.3) and (2.4) fok = 1 we get
qwe d t9(xq, 1)
—W,t,2)=(D —log—————= | W9 (x,1,2). 2.6
™ (x,1,2) ( q,x+atl gr’i(x,t)) (x,1,2) (2.6)

The last equality, combined with the fact thett(x, r) is a tau function in the sense of
Kyoto school for any fixed, characterizes completely thetau functions. The next theo-

rem gives a simple explicit description of thetau functions in terms of the classical tau
functions.

Theorem 2.1. A formal power series?(x, t) € C[[x, 11, 2, .. .]] is a tau function for the
g-KP hierarchy if and only ifup to an unessential factor depending only omg have

t(x, 1) = T(t +[x]y), 2.7)

wheret (t) € C[[11, t2, .. .]] is a tau function for the classical KP hierarchgnd

(L A=q? 5, A—¢q)® 4
e = (x’ 20—¢? 31-¢3 )

Proof. The ‘if part was proved in [1,25]. Below we prove the ‘only if part of the theorem.
From (2.2) it is clear that if we multiply? by a function which depends only on
we get another tau function for the same solution. Thus, without any restriction, we may

3 As usu4: : means normal ordering, i.e. always pull thalifference operator to the right.
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suppose that?(0, ) # 0. Plugging (2.2) in (2.6) and cancelling the exponential part we

get
( R )(r%xq,r—[z—l]) ) r%x,t—[z—l]))
T X -1 T4(xq, 1) T9(x. 1)
=[N (9 . 4. 0 .
= W (3—[1 logt?(x,t —[z77]) — 8—tllogr (xq, z)), (2.8)
where

[Z]=[Z]0=<z,§,§,...>.

If we putz = —1/x(¢ — 1) in the above identity we obtain

a% logz?(x,t = [x(L—¢q)]) = 8% logz(xq, 1),
and we can rewrite (2.8) as

vxqr —[z7) w0t =[]
T9(Xq, 1) Td(x,1)

_ ( 1 >‘1 {t90c, t — [z71), t9(x, t — [x(L— ¢)])}

“Tre-1 T, DT (x 1 — A — @)
(2.9)
with
_of ag
{f. g}:= PR farl'
Sincer?(x, t) is a classical tau function in, 7, . . ., it satisfies the differential Fay identity

due to Adler and van Moerbeke [2]
el =D vl = [y D)
=y
= -9, 1 = [ DTl = [y D+ 70, DTt = [ = [y (2.10)

Fory=! = x(1 — ¢) from (2.9) and (2.10) we get
tixqt—[z7)  tl =[N - [x@—9))
t(xq ) it =[xl -g))

Let us consider a new tau functidnx, ¢) := t9(x, t — [x],). Replacing by t — [xd],
in (2.11) and using thakf], + [x(1 — ¢)] = [x], we obtain

(2.11)

txqr—[z1) Tt —[z7M)
T(xq 1)  T(x,0)
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The last equality simply means that the ratia, r — [z~1])/7(x, r) does not depend on
and so we have
T, =z Tx,0)
70,1 —[z71)  £0,0)
From this equation it follows that(x, r)/7(0,¢) = f(x) does not depend om, 1o, .. ..
Thus, we finally obtain

t(x, 1) = f(0)T0, 1+ [x]y),

which finishes the proof of the theorem. O

Using this simple correspondence betweengthiau functions and the classical tau func-
tions we can construct commutative algeh#s of ¢-difference operators from any plane
W from Sato Grassmannian. Tlyewave function\I/"W(x, t,2) = Uy (t + [x]4, 2) con-
structed in Theorem 2.1 can be characterized as the unique funicfjom, 7, z) € W of
the form

o0 o
\Ilzv(x, t,7) = <1+ Za;(x, t)z_i> e;Z exp<2t,~zi) .
i=1 i=1
Consider the algebray of meromorphic functiong (z) with poles only atz = oo that
leaveW invariant:
Aw ={f@): f(@QW C W}

From the above characterization of thevave function¥?(x, ¢, z) and the definition of
Aw, one can easily show that for an(z) € Aw, there exists a@-difference operator
Ly(x,t, Dy ) such that

Lp(x,t,Dg )W, (x,1,2) = f(QW],(x,1,2). (2.12)

If Lw denotes the solution of theKP hierarchy, corresponding to the plaiie from (2.5)
we can write the following ‘explicit’ formula fol ¢ (x, ¢, Dy »):

Ly(x,t,Dyx) = f(Lw). (2.13)
Now, if we define
Al ={L;(x,0,Dy): f(2) € Aw},

we obtain a commutative algebragflifference operators isomorphic#ay with common
eigenfunction¥}, (x, z) = W}, (x, 0, z). This algebra is non-trivial i corresponds to

an algebro-geometric solution of the KP hierarchy, see [31,34,38]. The spaeesing

from algebro-geometric data are precisely those such4latontains an element of any
sufficiently large order. In the next section we shall use the above construction for the
sub-Grassmanniaiir', consisting of plane® e Gr, corresponding to rational algebraic
curves? In this caseAdy ¢ C[z].

4 Gr'tis denoted byGry in [38].
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3. Theg-adelic GrassmannianGrfIld and the bispectral problem

In this section we definé?rf}‘d and show the bispectrality of the corresponding algebras
of g-difference operators. The proof is based ag-eersion of the lemma due to Reach
[36], which was used in [24] to prove the bispectral property of ghgeformed Schur
polynomials. In they = 1 case, this lemma was first explored by Zubelli [43], who showed
the bispectral property of the classical Schur polynomials, and later by Liberati [33] who
extended the construction to the adelic Grassmannian.

Inspired by Wilson [41], we consider the linear functionajscondition$ ¢, (m, 1) on
C[z], defined by

(eq(m. 1), g) = (D" ) (L),

for m > 0 andr € C. We denote by:j the infinite dimensional space ov€r generated
by e, (m, A) for m > 0, and byC? the infinite dimensional space ow€y generated by all
g-conditions. In contrast to the classical casgn, 1) are no longer linearly independent.
It is obvious from the definition that, for £ 0,

q q q q q
CCqu CCM cc CCMI,1 CCM,2 C---.
A functional ¢ is called aone point g-conditiorif it is a finite linear combination of

g-conditions supported at single pointi.e.c € C;. For each finite dimensional subspace
C C C1, we set

Ve ={g(@) €C[z]: {(c,g) =0 for c e C}.

Now we are ready to give the definition of thedeformed adelic Grassmanni@wgd.

Definition 3.1. A planeW e Gr belongs toGra®if W has the formW = r~(z)Vc,

for some finite dimensional subspace c C?, which possesses a basis of one-point
g-conditions, and-(z) is the unique polynomial in of degree deg(z) = dimC, such
that

lim i |—0 = 1.
X_)OOwwh—O

Remark 3.2. From the definition it follows directly thamrf;‘d is contained in the Grass-
mannianG ', which corresponds to the algebro-geometric solutions of the KP hierarchy,
arising from rational algebraic curvesed41]. In particular, foranyW € Grg‘d, SpecAw

is a rational curve. The intersectioir24 N Gr;’}‘d is the sub-Grassmanniafirg, corre-
sponding to plane® € Gr, with a tau functionry () polynomial in a finite number of the
time variablesy, 1o, . . . .

Remark 3.3. The groupl"_ of rational functionsy (z) with y (co) = 1 acts® on Gr™ by
scalar multiplication and the g-wave functionpfz) W is justy () ¥{,. Thus, the algebra

5 These transformations are sometimes referred gaage transformations
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AZV constructed from W depends only onkhe-orbitin Gr"3, which gives us some freedom
in choosingr(z). The special choice of(z) above is made to fix the plane in each orbit
of I'_, whose tau function is, up to an unessential facéopolynomial in x with constant
leading coefficienti.e. it can be taken to be a monic polynonidrhis normalization is
used for the extension of the bispectral involution in Sedidre explicit formula for (z)
will be computed late(see(3.7)).

Letus fixaplang¥ = r~1(2)Vc € Grf]‘dwith C = {c1, ¢, ..., cy} asin the definition.
Since{c;} are one poing-conditions we can write

Sk
k=Y g, M),

i=1

wheresy is the ordef of the conditiorc,. From the characterization of thewave function
in the previous section and the definitionWf, one obtains the following explicit formula
for Wi, (x, 2, 2):

1 Wr (fls f21--~»st€XZ) ad
\Ilq 1, [ 4q 9 k s 3.1
WO ) = L W (i T2 ) exp(;_f“) G4

where fi(x, 1) = <ck, esexp(). t,-zi)>, and Wy, (f1, ..., fy) denotes the;-Wronskian

determinant de{D;jxlfj). From the defining relation dff;}, it is not difficult to check that
they satisfy

fite,t —[271) = filx, 1) — —qufk(x 1. (3.2)

Using (3.1) and (3.2) and the elementary properties of determinants we can nérite
(x, t, 2) inthe form

Wi (x,1,2)
A W (Al =z, v =T %
S WG ey o)
(3.3)
From the last equality, it follows thaﬁ,(x, t) is a polynomial inx given by
1 &
Tl 1) = Wig (f, fr o fo) (€2 el exp(Zﬂiri), (34)
i=1

where{g;} are constants determined by the equality

r(z) (Z A ) .

6 One should be careful here because the same condition can be written as a condition at the;ptiisind
then the order will be; + m.
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Substitutingg = =--- = 0in (3.1) and (3.4) we obtain

7o, (x) 1= T (x, 0) = Wrg (p1(x)e)™™, ... py()e[¥ ) (el - ef¥)™  (3.5)

Wy (p1(x)eg™, ... pn(x)eg™™, e 36

Wi, (x,2) = W, (x,0,2) =
v v r(2)ty, (x, O)eé‘lx .. eng

Akx

wherepi(x) = fi(x, 0)(eg") ™t = Y% i’ fork = 1,2,..., N andzj, (x) are poly-
nomials inx.

To write an explicit formula for (z) we shall suppose thatg® # A ;g% fori # j. This
inequality can always be achieved by picking an appropriate bagis bfdeed ;g% =
Xjq®i means that; andc; can be looked up as conditions of the same order supported
at the pointi;¢—* for somes big enough; taking appropriate linear combinations we may
assume that this never happens. Now, in the limit> oo, from (3.5) and (3.6) one can
deduce that

N
r@ =[] - g™ 3.7
k=1

Let us now formulate g-analogue of the lemma due to Reach [36].

Lemma 3.4. Letgo, g1, . . ., gn+1 be functions of x. Define
N+1
Gx) =) (-H)V e (x) / g0IWIg (g1, -+, 8y -+ gN+1) Uy X, (3.8)
k=1
Then
qu(glv g27 R gNa G) = e(x) qu(g11 g27 cre gN+1) (39)
with

, (3.10)
Xq

e(x) = (/ go(-x) qu(glﬂ 82» cet gN) dqx)
where/ d,x denotes the standard g-integral

The proof of this simple but important lemma can be found in [24]. We can now state the
main result of this section.

Theorem 3.5. Foreach planév e Grf}‘dthe commutative algebra of g-difference operators
A, is bispectral. Precisely, the functioh, (x, z) satisfies
Li(x,Dg )V (x,2) = fF@W] (x,2) (3.11)

for f(z) € Aw, and ifd(x) is a polynomial in x such thab, 0 (x) is divisible byfgv(xq),
there exists a g-difference operator inB(z, D,,;) independent of x such that

By(z, Dy )W}, (x, 2) = 0(x) W} (x, 2). (3.12)
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Proof. By g-integration by parts, for any polynomia(x), we have

/ h(x) e;(z(e;")_l dyx

e @]

B _Z(A(q —Dx +¢)(A(g — Dx +¢°) --- ((g — Dx +¢*h
- g D20 — g2 (1 — g22) -+ (b — g*H12)

k=0
X
x (D} .h) (W) e )™ (3.13)

Now we apply Lemma 3.4 witgp(x) = p(x)]'[fvzl(e,’}"x)*l, wherep(x) is a polynomial
inx, gi(x) = p,»(x)e;fx fori =1,2,...,N,andgy1 = e;Z/r(z). Using (3.13) we see
thatG can be written as

G = P(x,2)ey,

whereP (x, z) is a polynomial inx with rational inz coefficients. Thus, replacirvge’q‘Z by
Dy . e, we get

Xz

G =: P(Dy:.2) : €)= B(z, D,N)T‘fz). (3.14)

Putting (3.14) into (3.9) and using (3.5) and (3.6), we obtain
B(z, Dy )W, (x,2) = 0(x)¥, (x, 2)

with

0(x) = (/ ()T (x) qu)
xq

from which it follows thatd (x) can be any polynomial im such thatD, 6 (x) is divisible
by 7j, (x0). O

’

We shall illustrate all steps of the above construction in the next section.

4. Some elementary examples

In this section we present a few simple examples of bispectral algebradifierence
operators.

Example 4.1. As a first example let us tak® to be the space afro = Gr34n Grad
determined by the single conditidn g) = g”(0)—ag’(0), wherex is some parameter. This
corresponds to a situation slightly more complicated from the one considered in [24] with a
tau function which is a finite linear combination of Schur polynomials. The curve $pec

has just one cusp at the origin. In fact we havg = C[z3, z%, z°], so the singularity at

zero is not planar. Sinc€ € Ay, theg-pseudo-difference operatdry solves the third
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Gelfand—Dickey (or the third KdV) hierarchy, i.6.= L%V is ag-difference operator. From
(3.4) theg-tau function for the corresponding plane

1
W= g{g(z) € Clz]: g"(0) — ag'(0) = 0}

is
q 2 5 2
Ty (x, 1) = T qx + (2t —a)x + 1] — oty + 2.
Hence
Ty (x) = x% — ax.
l+g
The wave function, computed gt=r, = - -- = 0 is given by formula (3.6)

\ilgv(x,z)=<l+ ¢ + Dl -2 )exz

z2x2—a(g+Dx)) 1
If we take f (z) = z° € Ay one computes that

(1 - g3+ q)(4g3x? — 2a(q® + Dx + a?(q + 1)) D2
q3x(2x — a(q + 1)(2g3%x — a(q + 1)) i

L=L;=D] +

(@+D@*+qg+1D
q4x2

y (8¢%x3—40q3(¢%+1) (qg+1)x°+20% (243 +1) (g +Dx —a3(g+1)?)
(2x—a(g+1)(2g%2x—a(g+1))(2g3x —a(q+1)) "

(g +13@%+ g+ D% — g+ Dx — @)
g%x3(2x — a(g + 1))(2g%x — a(g + 1)) (2¢3x —a(q + 1))

We choose
[07
0(x) =x3— —(¢%+ q + Dx?
2q

such that
@+q+DA+q)
247 W

The bispectral operatdy (z, D, ;) is given by the formula

Dy x0(x) =

(x0Q).

@+ g+ D’ +242-2)

By(z, Dg.2) =Dy . 20% D
@+ D% +q+Dag—Dz—2)
+ 2¢5372 Da.c

Lo+ Dg®+q+1)
2¢3z72 '
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The next example deals with the simplest possible pléreelonging toGrgd but not to
Grad,

Example 4.2. Let C = Ce,(1, 1) be the space generated by the single condijgf, 1)

at the pointz = 1. Forg # 1 this is the simplest example of soliton solution of the KP
hierarchy, consisting of a solitary wave. We have thaj = z — ¢ and theg-tau function
for the corresponding plan& = r 1V is given by formula (3.4)

exp(X_72qq") — exp(Xo72qn)

'C;IV()C, H)=x+

g—1
Thus
Th(x) =x
The wave function, computedgt=r = =--- =0, is
_ 1
U (x,7) = (1— —> ez
w2 xz—q)) 1

The algebrad y is generated by

f@=2=@+Di+q
and

h@) =22= 3@+ D%+ 3(q° + 49 + Dz — 3(¢° +q).
where

(q+D(qg%* +q— Dp o @32 —q -1
q2x 9. q2x2 :

2
Ly= Dq,x —

If we choose for examplé = x2, the bispectral operatd; (z, D, ) becomes

(1-4¢%z g+1
By(z, Dg:) = D3 .+ Dy, — :
P T TR T e p@a- D T g - )za-1)
Letustake = f(z) andn = h(z) as generators of the coordinate ring. The corresponding
curve is

2 _ £3 q_lzz
n-=4§ +(—5—)§-

The sole singularity is a double point at the origin which becomes a cusp in the limitL,
in agreement with Wilson'’s result.

Remark 4.3. Using the above examples one can easily understand the picture in general.
For a plane from the ‘non-deformed’ paftro = Gradn Grgd, the tau function is a polyno-

mial in finitely many time variables and we have a rational solution of the g-KP hierarchy
(in all variableg. In terms of Darboux transformatiofsee[5,6,33]) this corresponds to
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bispectral operators obtained by factorizing some powerBof. In the case of Example
4.1,the operatorl, = L ¢ is a Darboux transformation from the operatf(D, ) = Dg’x.

When we have conditions supported ‘outside 0, we get soliton-like solutions of the g-KP
hierarchy, which are rational in x, and which are rational in all time-variables in the limit
g — 1. This corresponds to some deformation of the constant coefficient operator from
which we do the Darboux transformation. In Examgl@ the operatorL ¢ is a Darboux
transformation from the second order g-difference operator

f(Dq,x) = (Dq,x - 1)(Dq,x —q).

Note also that the operatd@D, . — 1)2 cannot be ‘rationally’ factorized in a different way.

In general, one would easily show that the bispectral operators parametrizé?d;f&can

be described as Darboux transformations from constant coefficient g-difference operators
of the form

N ki '
L=]]]](Pgx = 2ig"™.

i=1j=1

In the next section, we consider the ‘generic’ case of planes generated by first order
conditions at different points and show that in this case the bispectral property is related
to a symmetry inGr;';‘d. In the casey = 1, this is the clue to the connection with the
Calogero—Moser system (see [27,42]).

5. g-Calogero—Moser matrix and the bispectral problem

Let us take first order conditiorfes, . . ., cy}, supported at different pointas, .. ., Ay},
which satisfy alsd A; # ghjfori# j,ie.c; =e;(1, 1)+ aieq(0, 1;) and consider the
plane

N

w=[]c-qrptve. (5.1)
j=1

Let us denote byA anda the diagonal matriced. = diag(A1, A2, ..., Ay) anda =
diaglw1, a2, ..., ay), and by Varir) = (A{fl)lgi,jSN — the Vandermonde matrix. Now,
using (3.4) one can write the tau function in the form

T (x, 1) = det|:xVan(qA) +V

exp( 6t —ghA) - EA_1>:| . (5.2)

FVan(h) (a exp(z ti(l_qi)Ai) + 14

7 In the rest of the paper we shall briefly cgll} ‘ g-different’ if they are different and; = ghjfori #j.
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where Varigi) = Van(gi1, gia, ..., gin),E = Ey is the identityN x N matrix and

0 0 0
1 1 1
V = [2]q Al [Z]q A2 S [2]q AN
[N -1, [N-1,2072 ... [N-1,272
with
1-4"
[n]y = :
q 1_ q

We shall also need two diagonal matricés.) = diag(A1, A2, ..., Ay) andA’(L) =
diag(A}, A5, ..., A))) defined by

_ T4 P
Aj _HW7 A; —l_[(q)\i —Xj).
J#i / J#i
With these notations one can check tiiatan be written as

V = —Van()A"TAA, (5.3)

whereA is a matrix of Calogero-Moser type

x Ai(A) L
Aij = m for i 75 ] (54)
1A

i = —)Li a-1 (5.5)

From (5.3) it easily follows that
Van(gx) = VanW) A" NE + (1 — g)AN)A'. (5.6)
Now, using (5.2),(5.3) and (5.6) and the fact tdt A ando are diagonal matrices (and

S0, in particular, they commute) we get the following formulaﬁ@r

= det(Van(k))det(x(E +A—-q@)AN) — A+« exp(Z i(1— q")A")

LR —gHA) - EA_1>. (5.7)

l-g
From (5.6) it follows that
detE + (1 — g)AA) = gV VD12 £ 0,

thus we can define
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X, =(E+1—q)Ar)~t ([\ —a exp(z (1 — qf)A")

E— ((L—gHA!

(EoeeXud-g) )A_1> . (5.8)

1-9¢

In particular, forr = 0, we have

Xo=(E+Q—q)AN) YA —a). (5.9)

X, and X are connected by

i A E—eXp(Zfi(l—qi)Ai) _1

X, :Xgexp(Zti(l—q )A)+ - AL (5.10)

From the last equality we get

X, 1 = (X,(ZE— A) + E)(ZE— gA) 7%,

t—[z

and thus we can finally write explicit formulae (cf. [40,42]) for the tau function and the
wave function

2l (x, 1) = det(Van(q/\))det<xE — Xo exp(z (1 — qf)A")

L2 ma)A) - EA_1>, (5.11)
1-¢q
det(xzE— xgA — zX% + X;A — E) - k
q _ z
Wl (x,1,2) = JoUAE = X,)delZE— g2 e exp(kzz:ltkz ) (5.12)

One can check that the matricas A andX; satisfy the following relations:

[A.Aly+E = AT [X,, Al, — E = (X0, A] - E)exp()_ (1 —g)A’).
[Xo, Aly — E = —(E + (1= ¢)AN)*AT(E + (¢ — DAX0),
where [P, 0], = PQ— qQPdenotes thg-commutator and

1 ...1
r=1Iyv=|: :
1 ...1
In particular, we have
rank((X;, Al, — E) = 1.

Our next goal will be to extend the symmetry in the adelic Grassmannian {o#hg case
for a generic planév ¢ Gr;';‘d of the form (5.1). Before that, we shall formulate a technical
lemma.



P. lliev/Journal of Geometry and Physics 35 (2000) 157-182 173
Lemma 5.1. In the notations above, the identity
(E + (1 —q)ANAT =gV 1AT (5.13)
holds
Proof. Equality (5.13) is equivalent to

N q)\k_)" N—l

Z)\ —q)»kl_[ M — Ai q' (5.14)

The left-hand side of (5.14) can be rewritten as

1
det(Van(}))

F)
det(Van(A))

N
s
5 K dettVan(i, A2, .., @his -y AN))
kzl)\s_q)tk

F (%) is a polynomial in{A;} which is zero fon; = A, hence deatvan(1))/F (). But since
det(Van(1)) and F (1) have the same degree, it follows that the left-hand side of (5.14) is a
constant, which depends only grandN. Takingr; — 0, (5.14) reduces to

zn“k_k — [N - 1],

k#si#k,s
Remembering that the left-hand side does not deperid;dnone can easily prove the last
equality by induction. O

Now, we are ready to characterize the planes of the form (5.1) by the next proposition.

Proposition 5.2. Let X and Y be twa x n matrices, such that the eigenvalues of Y are
g-distinct and

rank((X, Y], + E,) = 1.

Then, there existy < n and a matrixU € GL(n, C) such that

. A O
Y = —Udiagrt, ..., AN, AN4L, ... AU L= —U ( 0 A/) Ul
A A

and X can be written in the block form

Xo x* _
X:U( 0 A”)U .
with Xo = (Exy + (1 — ¢)AA)"1(A — &), the N x N matrix given by(5.9) for some
diagonal matrixe, and A” = ((1 — ¢)A’)~L. Defining a planeW = W (X, Y) e Gr?d by
(5.1),its wave function at = 0 is given by
det(xzE, + xqY—zX— XY—E,) ,,
detxE, — X)detzE, +qv) ¢

e =0(x,z, X, Y) =
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Proof. We can diagonalize the matrik by a matrixU; and write
[U XUy, diagna, - .., Ay — En = S'T,S”,

whereY = —Uidiag(Ag, .. ., /\,,)Ul‘l, ands$’ andS” are diagonal matrices (we still have
the freedom to conjugate by diagonal matrices). SupposesthatO fori = 1,2,..., N
andS! =0fori = N +1,...,n. ThenX is of the form

X/ k -1
X:Ul<0 A”)Ul’
and conjugating by diagonal matrices we can makgfor i = 1,..., N) as arbitrary
non-zero numbers. Let us i = —A;(1). Thus we get

[X', A]l, — Ex = —ATyS (5.15)
for someN x N matrix S. If we put
a=A—(Ey+A-qANX,
and multiply (5.15) to the left byEy + (1 — ¢)AA), using Lemma 5.1, we obtain
[A.a] = ATy(En + (g — DAX = g™ 715).
From the last equality it follows that is a diagonal matrix. Since
Wi(x,z,X,Y)=W(x,z, X', —A),
the rest of the argument is clear from (5.12). O

As an immediate corollary of Proposition 5.2, we can state the main result of this section.

Theorem 5.3. Let X and Y ba x n matrices which have g-different eigenvalues and satisfy
rank((X, Y], + E,) = 1.

Let W = W(X,Y) and W = W/(—qY’, —¢~1X") denote the planes constructed in
Proposition5.2. Then we have

\ilev(x, 7) = \I‘?,V,(Z,x),
i.e., on pair of matrices, the bispectral involution corresponds to the map
B1(X.Y) = (—qY',—qg'X").
Remark 5.4. Following Wilson[42], let us denote by, the complex vector space of pairs

(X,Y), where X and Y are x n matrices, and by’{ the sub-variety o/, consisting of
all (X, Y) satisfying the equation

rank((X, Y], + E,) = 1. (5.16)
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The group Gl, C) acts onV, by simultaneous conjugation of X and Y. Clearly this
action preservets.16).Let C{ stand for the quotient spad&! /GL(n, C). Formula(5.10)
suggests to introduce g-analogues of the Calogero—Moser flowg/pinduced by the
GL(n, C) invariant flows onC{

(X, Y)—> ( Xexp(Y - YY)

(5.17)

LE- exp(thiilq— YY) Y) |

One can check that the above formula defines properly commutative flowWs @rich
preserve the conditio(b.16).However, in the casg # 1 these flows are not Hamiltonian

(in the standard coordinat@¢sand thus the reduction procedure [@9] cannot be easily
applied. In the next section, we shall write the corresponding dynamical system on the
reduced phase space in a Hamiltonian fouming the approach of Shiof40].

6. Rational solutions tog-KP hierarchy and the corresponding deformation of
Calogero—Moser hierarchy

In [3] Airault et al. discovered an amazing relation between equations of KdV type and
the Calogero—Moser system. Namely, they showed that the poles of a rational solution to the
KdV or Boussinesq equation that vanishes at infinity is described by the Calogero—Moser
system with inverse square potential, with some constraint on the configuration of poles.
Krichever [32] observed that the poles of the rational solutions of the KP equation that vanish
atx = oo, move according to the Calogero—Moser system with no constraint and wrote
down explicit formulae for these solutions. Finally, Shiota [40] extended this phenomenon
to the whole KP hierarchy. The aim of the present section is to find the system of equations
for the poles of the rational solutions to theKP hierarchy. Since the poles come from
zeros of the tau function, let

t(x, 1) = (x — x2(1))(x — x2(1)) - - - (x — xn (1)) (6.1)

be ag-tau function of the KP hierarchy, which is a polynomiakinWe may assume that
dx;/oty # O forj = 1,2,...,N. Indeed, ifox;/dt, = O for somej, then it is not
difficult to see thabx; /01, = 0 for anyn (cf. (6.9),(6.10) and (6.12) below), which means
that (x — x;) is just an unessential factor in the tau function. We shall suppose also that
x; # q*x; fori # j andk = 0, 1. This is a natural restriction since in the lingit— 1

it reduces tox; # x; fori # j, which can always be achieved by picking an appropriate
neighbourhood of thét;}'s, see [39,40]. Let us denote by, = A;(x1, x2, ..., xy) the
expression from the previous section

A =[R2 (62)

j#i TN
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and introducey, yo, ..., yny by
—x| = A; gl-a)xiyi (6.3)

where for simplicity we have poséd= 9/dr1. We define they-deformed Calogero—Moser
matrix Y by

x! A; ed—a)xiyi
Yj=——_t—="— , for i#j, (6.4)
Xi — OXj Xi — OX;
o 1+xl{ _ 1— A; ed—axiyi 6.5)
xi(g — 1) xi(g — 1)

With these notations we can state the main result of this section.

Theorem 6.1. Lett9(x,t) = ]_[,Nzl(x — x; (1)) be a tau function of the g-KP hierarchy,
which is a monic polynomial in x. Then the motion of the zerog‘ofs governed by
a hierarchy of Hamiltonian systemwhich is a g-deformation of the Calogero—Moser
hierarchy. Preciselyif we define

H, = (—1)"@ tr(y"),
n

we have
9 (xi dH,/dy;
o = , =12,... 6.6
oty (y,-) <—aHn/axi " (6.6)

Proof. Consider the wave function

Wi(x,t,7) = <Zl/sz_k> e;ZeXp(Ztkzk) , (6.7)
k=0 k=1

whereyg = 1 andyy, k > 0, is given by

— 34
Vi = =Tt (6.8)
T4
For our special choice (6.1) of the tau function we can write
N Wi
= il k > l 69
Vi ;x — k=2t (6.9)
and in particular, fok = 1 formula (6.8) gives
w1 = —X. (6.10)
Putting (6.1) and (6.7) in (2.6), and comparing the coefficients 6f we obtain
N ’
Yy X:
— = D, -1 ! . 6.11
Vi1 + ™ Vk+1(X0) + Dy x i + x(q );(x v xi)lﬁk (6.11)
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Fork > 0, the coefficient ofx — x; /)1 in (6.11) gives the reccurence relation

; 1+ x/ x!
_ Wk41,i _ i Wi — i Wk, (612)
q xi(g —1) PRl

and the coefficient ofx — x;)~1 in (6.11) gives

dwp 14« (¢ — Dxix;
W1 + = = Wk, i
tl o xi(g—1) ;(Xi —xj)(xiq — xj) l
x!
i - 6.13
—{—in —x; Wg, j ( )
JF#
DenotingX = diag(x1, x2, ..., xn), wx = (W1, ..., wen)', e= (1,1, ...,1)"  we have
from (6.10) and (6.12)

Wi = (_qY)kle/e’ (614)

whereY is theg-deformed Calogero—Moser matrix defined by (6.4) and (6.5). Eliminating
wi+1,; from Egs. (6.12) and (6.13) we obtain

aWk,i . 1+xl/ Z (q - 1))Cix;- Wi i — (f] - 1)~xixl', Wi ;
sl s
(xi —xj)(xig — x;j) (xi —x)(i—qx) !

(6.15)

a1 - X;

J# J#

Let
o oo
W (x,1,7) = (1 + lef;:z"‘) el/ffeXp<—Ztkz")
k=1 k=1
be theg-adjoint wave function (see [25]). Writing;" as
N
W

1//:22:)6—)6,'

i=1

and comparing the coefficients of — gx)~1 in
NWT* = —(Llx/g)3 W = (D1yg,x — ao(x/q)) V",

we obtain as above

wi = —X'(=yH e (6.16)
wherewy = (wf 1, w{ 5, ..., wf y)'. Now, we compute the coefficients m(;}c in the
equation

S =—(SD}  S7H_5S. (6.17)

The left-hand side is
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(anxl)wk i Op Wy, i —k
oS = ~ | D
’ ;;;<<x—x>2 ) ot

" (O xi !
_ ( X; (Onxi) I nX; )Dq,}c +O(D‘;§) (6.18)

(x—x)?  x—x

On the other hand, from the definition of theadjoint wave function we have
$7t =Dyl yixo),

so the right-hand side of (6.17) becomes

—(SOp STH-S=—| D wDy T yfxa) | | 14D wD,k
k+i>n+1 k=1
> YDt +0(D,3).
k+l=n+1
and thus
X! 0,x;
jonti + Z d’] 1///(

— )2 —
(x —x;) X — X; ity

Comparing the coefficients ¢t — x;)~2 in the above identity, and using (6.14) and (6.16),
we get

n n
/ * *1 N
xi(anxi) = _z :wn+l—k,iwa = z :wn—i-l—kE" Wik

n
— (_1)n+lzqkfl etynka/Eii kalxle.
k=1

Here, as usuak;jj denotes the matrix with 1 at th{& j)th entry, with all other entries zero.
SinceX'Ejj = x{Eii , we can Cancel{ and rewrite the above equality as

1 ...1
n
anxi — (_1)n+1 tr qu_lyn_kEii Yk—lX/ :
k=1 1 ...1
1 ...1
Finally, replacingX’ | : | by —=(E +XY—-qYX, and using the elementary prop-
1 ...1

erties of the trace operator we get
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n
Ouxi = (=1)"tr <qu_1Y"_kEii YFHE + XY - qu>>
k=1

=" (Zq“trusn s B A (Gl 2D G 0
k=1 k=1
=Y dFu " FE; YkX))
k=1
= (=1)"[n], tr((Eii + (1 — @) Ei XYY" 1. (6.19)

But since

aY

— = Ei + 1= q)EiiXY,

dyi
(6.19) gives the first equation in (6.6). To get the second equation, we need to represent
‘nicely’ the first flow 8/9¢1 on the matrixy’, which is the content of the next lemma.

Lemma 6.2. The first flowd/dz1 can be written in the Lax form

Y
T trom, (6.20)
of1

where M is another deformation of the Calogero—Moser matrix given by
/
i

X 1+x] X X,
Mj = — for i # j, Mii=—'+z< k& )
Xi — Xj xi(g —1) Py Xiq — Xk Xj — Xk

Proof of Lemma 6.2. The equality (6.20) can be checked directly, using (6.10) and (6.15)
for k = 1, and the definition (6.4) and (6.5) bt O

We can now finish the proof of Theorem 6.1. From (6.3),(6.19) and Lemma 6.2 one can
easily deduce

dyi

5= (D" tr(BY"™h, (6.21)
where
1 N
B = ——F——[Eii, M]
(g — Dxix;

1 1 . A 1 dlog A;
—EiijY + —(ME;;Y — YEiM Eji
+Xi iy + xl{( i BiM) + (q " Z]: 8xj 1)

i dlog A; i
= (Zx—’ 2 ‘Eﬂ-) Y — 2(Ei + (L - @xiEilY),
— X ij Xi

with M,—k = (1 - $jx) Mjk. On the other hand, a direct computation shows that
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Y dlogA; 1
B+ — = Ei + Ei,Y |, 6.22
; axi VT A-gx (6.22)

which combined with (6.21) gives the second equation in (6.6).

Remark 6.3(The limiting case; = 1). We should note that our choice of ‘dual’ variables
{y;} does not reduce exactly to the standard ¢néwith &; = dx; /912 in the classical case
g = 1.Indeed, in the limiy, — 1, from (6.4) and (6.5)it follows that

. 1 . 0x; 1
Imyj=——— fori#j lim¥ij=—"=y+y —.
qg—1 Xi — Xj qg—1 dat2 [T Xj — X

1

$i=yz'+Z—

AT

From these relations, it is not difficult to see that the system of equgodigs equivalent
to Eq.(3) in [40].
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